首页> 外文OA文献 >Analyzing the effect of local rounding error propagation on the maximal attainable accuracy of the pipelined Conjugate Gradient method
【2h】

Analyzing the effect of local rounding error propagation on the maximal attainable accuracy of the pipelined Conjugate Gradient method

机译:分析局部舍入误差传播对最大值的影响   流水线共轭梯度法的准确度可达到

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Pipelined Krylov subspace methods typically offer improved strong scaling onparallel HPC hardware compared to standard Krylov subspace methods for largeand sparse linear systems. In pipelined methods the traditional synchronizationbottleneck is mitigated by overlapping time-consuming global communicationswith useful computations. However, to achieve this communication hidingstrategy, pipelined methods introduce additional recurrence relations for anumber of auxiliary variables that are required to update the approximatesolution. This paper aims at studying the influence of local rounding errorsthat are introduced by the additional recurrences in the pipelined ConjugateGradient method. Specifically, we analyze the impact of local round-off effectson the attainable accuracy of the pipelined CG algorithm and compare to thetraditional CG method. Furthermore, we estimate the gap between the trueresidual and the recursively computed residual used in the algorithm. Based onthis estimate we suggest an automated residual replacement strategy to reducethe loss of attainable accuracy on the final iterative solution. The resultingpipelined CG method with residual replacement improves the maximal attainableaccuracy of pipelined CG, while maintaining the efficient parallel performanceof the pipelined method. This conclusion is substantiated by numerical resultsfor a variety of benchmark problems.
机译:与大型和稀疏线性系统的标准Krylov子空间方法相比,流水线Krylov子空间方法通常在并行HPC硬件上提供改进的强缩放能力。在流水线方法中,通过将耗时的全局通信与有用的计算重叠来缓解传统的同步瓶颈。但是,为了实现这种通信隐藏策略,流水线方法为更新近似解所需的许多辅助变量引入了额外的递归关系。本文旨在研究流水线ConjugateGradient方法中附加递归引入的局部舍入误差的影响。具体来说,我们分析了局部舍入效应对流水线CG算法可获得的精度的影响,并与传统CG方法进行了比较。此外,我们估计算法中使用的真实残差和递归计算的残差之间的差距。基于此估计,我们建议一种自动残差替换策略,以减少最终迭代解决方案可达到的精度损失。所得到的带有残差替换的流水线CG方法提高了流水线CG的最大可获得精度,同时保持了流水线方法的有效并行性能。各种基准问题的数值结果证明了这一结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号